Faraday Rotation Effect of Highly Tb₂O₃/Dy₂O₃-Concentrated B₂O₃-Ga₂O₃-SiO₂-P₂O₅ Glasses

Tomokatsu Hayakawa,^{*,†} Masayuki Nogami,[†] N. Nishi,[‡] and N. Sawanobori[‡]

Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan, and Materials Section, R&D Division, Sumita Optical, Inc., 4-7-25 Harigaya, Saitama 338-8565, Japan

> Received December 27, 2001 Revised Manuscript Received June 24, 2002

Faraday rotation (FR) has been useful for an optical attenuater, circulator, and magnetic field (or current) sensor.^{1–3} There is growing importance of such Faraday devices because an increasing number of optical and laser-based devices require either rapid switching or protection against a back-reflected beam. Especially, the feedback effect ultimately restricts the performance of laser systems, resulting in amplitude fluctuations, frequency shifts, limitation of modulation bandwidth, noise, and/or even damage.⁴ Since the recent development of laser systems are mainly focused on a shorter wavelength region, as represented by GaN-based lasers,^{5,6} it should be considered which kind of materials are prospective as Faraday devices working in the corresponding frequency region. FR glasses with a high concentration of rare-earth ions have the advantages in the wide optical window and relatively large Verdet constants in the visible region.^{7,8}

The FR effect is generally evaluated by $\theta_{\rm F} = VBL$, where $\theta_{\rm F}$ (rad) is the angle by which the plane of a polarized light is rotated on a passage through a length L (m) of a glass in a density of magnetic fluxes B (T). The material constant $V (rad/(T \times m))^9$ is the Verdet constant, which is a function of both the incident wavelength and the concentration of rare-earth ions in glass. The Faraday rotation of rare-earth-doped glasses except $\mathrm{Gd}^{3+7,10}$ is paramagnetic in origin (hence, θ_{F} is negative) and is characterized by the frequency depen-

Nagoya Institute of Technology.

- Asahara, Y. J. Ceram. Soc. Jpn. 1991, 99, 903.
 Ning, Y. N.; Wang, Z. P.; Palmer, A. W.; Grattan, K. T. V.; Jackson, D. A. Rev. Sci. Instrum. 1995, 66, 3097.
 - (3) Ballato, J.; Snitzer, E. Appl. Opt. 1995, 34, 6848.
- (4) Wilson, D. K. *Laser Focus* 1988, *24*, 103.
 (5) Narukawa, Y.; Kawakani, Y.; Funato, M.; Fujita, Sz.; Fujita, Sg.; Nakamura, S. *Appl. Phys. Lett.* 1997, *70*, 981.
- (6) Zhao, G.; Ishikawa, J.; Egawa, T.; Jimbo, T.; Umeno, M. Jpn.
- (7) (a) Berger, S. B.; Rubinstein, C. B.; Kurkjian, C. R.; Treptow,
- (i) (a) Beiger, S. B., Rubinstein, C. B., Rurkhan, C. R., Heptow, A. W. *Phys. Rev.* **1964**, *133*, A723. (b) Rubinstein, C. B.; Berger, S. B.; Van Uitert, L. G.; Bonner, W. A. *J. Appl. Phys.* **1964**, *35*, 2338.
 (8) Borrelli, N. F. *J. Chem. Phys.* **1964**, *41*, 3289.
 (9) As a conventional usage, min/Oe/cm is also used for Verdet

dence, $V = K(\lambda_t^2 - \lambda^2)^{-1}$,¹¹ where *K* is a combination of constants including the number-of-density and effective Bohr magneton $(p = g[J(J+1)]^{1/2})$ of the magnetically active ion. λ_t is the effective transition wavelength, often close to a 4f-5d transition of the corresponding rareearth ion. Thus, large Verdet constants were obtained for glasses containing Ce³⁺, Pr³⁺, Tb³⁺, and Dy³⁺.¹²⁻¹⁵ This is due to the fact that the 4f-5d transitions of these ions are located to lower energies.¹⁶

In the previous works, the content of rare-earth oxides was restricted to 30 mol % because of the difficulty of the glass manufacture. However, there has been a great development of the glass manipulation of highly concentrated rare-earth oxide glasses so that the 40 mol % content of Tb₂O₃ or Dy₂O₃ was accomplished. Recently, further condensation, as much as 50 mol % in glass, has been achieved by the double incorporation of Tb₂O₃ and Dy_2O_3 . In this paper, we present the Verdet constants and magnetic properties of these novel FR glasses.

Glass samples investigated were produced by a conventional melt-quenching method at Sumita Optical Glass, Inc. The glass compositions were based on $5B_2O_3-3Ga_2O_3-3SiO_2-P_2O_5$ (in mol %) with the addition of 0.5 wt % Sb₂O₃ as a reducing agent of tetravalent terbium ions. The mixtures of commercially available compounds of H₃BO₃, Ga₂O₃, SiO₂, H₃PO₄, Tb₄O₇, and Sb₂O₃ were melted at \approx 1450 °C for 2 h in a platinum crucible, which were rapidly quenched on a carbon mould and then annealed at \approx 650 °C (see Table 1). To study their glass structures, Raman spectra were measured using a Fourier transform Raman spectrometer (Perkin-Elmer, Spectrum 2000 system). The excitation source for the Raman observations was a 1064-nm line of a neodium:vttrium-aluminum garnet (Nd:YAG) pumped by a semiconductor solid-state laser. FR measurements were performed at a temperature over the range of 15-300 K in pulsed magnetic fields with a pulse width of 30 ms. The magnetic fluxes condensed up to 16 T at the top of the magnetic pulse were applied along with a *z*-direction of a rod-shaped sample of $\phi 2$ mm in diameter and 4-5 mm in height, which was placed between two linear-polarizer films (Koyo, HN-32).^{17,18} A He–Ne laser (632.8 nm) with a random polarization was used for an incident source. The transmitted light was detected by a photomultiplier.

To best our knowledge, the largest Verdet constant previously reported in the literature was at most -102.7 $rad/(T \times m) = -0.353 min/Oe/cm)$ at 632.8 nm at room temperature in binary 30Tb₂O₃-70B₂O₃ glass.¹⁹ As a

(13) MacFarlane, D. R.; Bradbury, C. R.; Newman, P. J.; Javornic-zky, J. J. Non-Cryst. Solids 1997, 213&214, 199.
(14) Leterllier, V.; Seignac, A.; Le Floch, A.; Matecki, M. J. Non-

Cryst. Solids 1989, 111, 55.

- (15) Qiu, J.; Tanaka, K.; Sugimoto, N.; Hirao, K. J. Non-Cryst. Solids 1997, 213&214, 193.
- (16) Loh, E. Phys. Rev. 1966, 147, 332.
- (17) Hayakawa, T.; Nogami, M. Solid State Commun. 2000, 116, 77
- . (18) Imaizumi, D.; Hayakawa, T.; Nogami, M. *J. Lightwave Technol.* 2002, 20, 740.

^{*} To whom correspondence should be addressed. Tel.: +81-52-735-5110. Fax: +81-52-735-5294. E-mail: hayatomo@mse.nitech.ac.jp.

[‡] Sumita Optical, Inc.

constants. The following equation is helpful for the unit conversion from cgs to MKS unit system: $1 \min/Oe/cm = 290.74 \operatorname{rad}/(T \times m)$. (10) Valiev, U. V.; Krinchik, G. S.; Levitin, R. Z.; Sokolov, B. Yu. *Sov. Phys. Solid State* **1985**, *27*, 140.

⁽¹¹⁾ Van Vleck, J. H.; Hebb, M. H. Phys. Rev. 1934, 46, 17.

Petrovskii, G. T.; Edelman, I. S.; Zarubina, T. V.; Malakhovskii,
 A. V.; Zabluda, V. N.; Ivanov, M. Yu. J. Non-Cryst. Solids 1991, 130, 35

Table 1. Nominal Composition and Verdet Constant V (at 632.8 nm, 300 K) for Highly Tb₂O₃/Dy₂O₃-Concentrated Borate Glasses Synthesized in This Work

sample's name	Tb ₂ O ₃	Dy_2O_3	B_2O_3	Ga ₂ O ₃	SiO_2	P_2O_5	$V(rad/(T \times m))$
Tb25B	25		75				-72.8
Tb30B	30		70				-82.9
Tb30BG	30		60	10			-89.2
Tb30BGS	30		50	10	10		-80.8
Tb40BGSP	40		25	15	15	5	-146.3
Dy40 BGSP		40	25	15	15	5	-129.7
Tb40Dy10BGSP	40	10	16.67	10	10	3.33	-185.3
Tb10Dy40BGSP	10	40	16.67	10	10	3.33	-168.6

structural model of a rare-earth metaborate 25R₂O₃-75B₂O₃ glass, Chakraborty et al.²⁰ proposed a laddertyped chain consisting of a four-coordinated boron (BO₄) and two three-coordinated borons (BO₃). A rare-earth ion \mathbb{R}^{3+} is predominantly located near the negatively charged BO₄ unit and plays an important role as linkage between two ladder-type chains. It is supposed that with an increase in the R_2O_3 content up to 30 mol % a breakup of the infinite chains takes place so as to produce an amount of nonbridging oxygens and an aggregation of R_2O_3 between the BO_4-2BO_3 chains. In our course of the glass synthesis for increasing Tb₂O₃ content, the Ga₂O₃ component was introduced as the substitution for BO₄ units, resulting in the reinforcement of the ladder-type chains. Nevertheless, it was found that much incorporation of Ga₂O₃ tended to the precipitation of crystalline GaBO₃ and TbBO₃. Thus, the SiO₂ component was necessitated to prevent such crystallizations. The P2O5 component served for decreasing the viscosity of the glass melt. Eventually, we succeeded in the fabrication of a 40 mol $\%~Tb_2O_3\text{-}$ containing borate glass with the 5B₂O₃-3Ga₂O₃-3SiO₂-P₂O₅ matrix batch, which exhibits high Faraday rotation of $-146.3 \text{ rad}/(\text{T} \times \text{m})$, as seen in Figure 1 and Table 1. Raman spectroscopy was employed for the investigation of microscopic structural units in the glass. Figure 2 shows the Raman spectrum of the 40 mol % Tb₂O₃containing glass, which exhibits a strong peak around 980 cm^{-1} . It appears that the peak is more prominent above the content of 30 mol % with respect to other peaks. The insertion of Figure 2 shows Raman data of $R_2O_3-B_2O_3-Ga_2O_3-SiO_2$ glasses, where R^{3+} was substituted with gadolinium ion (Gd) and a 514.5-nm beam of Ar⁺ laser was used as a light source. On one hand, the addition of Ga₂O₃ to binary R₂O₃-B₂O₃ glass, denoted by "G" in sample names, increased the peak intensity at \approx 980 cm⁻¹, and on the other hand, the incorporation of SiO₂ content, denoted by "S", decreased the 860-cm⁻¹ peak assigned with pyroborate groups. It is also noticed that the condensation of the rare-earth oxide up to ≈ 40 mol % with incorporated SiO₂ component enhanced the 980-cm⁻¹ peak. Since the SiO₂ component only gave a small contribution that appeared at \approx 920 cm⁻¹ (Si–O⁻ stretching mode), we conclude at the present time that either silicate or a phosphate group is not responsible for the feature at 980 cm^{-1} , which is quite possibly attributed to isolated orthoborate

Figure 1. Dynamical Faraday rotation with a pulsed magnetic field of 16 T at 632.8 nm at 300 K for (i) Tb25B, (ii) Tb40BGSP, and (iii) Tb40Dy10BGSP glasses.

groups, $(BO_3)^{3-,21,22}$ The strong peak implies that a part of the B_2O_3 composition does not play the role of a network former anymore but exists as isolated ionic groups with three nonbridging oxygens which can compensate positive charges of the trivalent rare-earth ions. For such a highly Tb_2O_3 -concentrated glass, curious behaviors in magnetic and optical properties were reported.^{23,24}

Dysprosium oxide was also used for the incorporation into the matrix glass because the paramagnetic rotation of rare-earth oxide glasses is dependent not only on the number of magnetic ions per volume but also on their magnetic moments.⁷ Dy³⁺ has the largest total angular moment in the ground state (J = 15/2) in the lanthanide series and hence is also expected to contribute magnetooptical properties of the glasses. The temperature dependence of the Verdet constant of a 40 mol % Dy₂O₃ containing glass was estimated with 16T-pulsed magnetic fields. At 300 K the FR angle $\theta_{\rm F}$ was a linear function of the applied magnetic field intensity *B* and the Verdet constant was -129.7 rad/(T × m). The Verdet constant increased with a decrease in the sample temperature and exhibited an inverse proportionality

⁽¹⁹⁾ Tanaka, K.; Hirao, K.; Soga, N. Jpn. J. Appl. Phys. 1995, 34, 4825.

⁽²⁰⁾ Chakraborty, I. R.; Day, D. E.; Lapp, J. C.; Shelby, J. E. J. Am. Ceram. Soc. 1985, 68, 368.

⁽²¹⁾ Konijnendijk, W. L.; Stevels, J. M. J. Non-Cryst. Solids 1975, 18, 307.

⁽²²⁾ Kamitsos, E. I.; Karakassides, M. A.; Chryssikos, G. D. *Phys. Chem. Glasses* **1987**, *28*, 203.

⁽²³⁾ Hayakawa, T.; Sato, K.; Yamada, K.; Kamata, N.; Nishi, N.; Maruyama, F. Synth. Met. **1997**, *91*, 355.

⁽²⁴⁾ Sato, K.; Yamaguchi, K.; Maruyama, F.; Nishi, N. *Phys. Rev.* B **2001**, *63*, 104416.

Figure 2. Raman spectra of Tb₂O₃-containing borate glasses of Tb25B, Tb30B, and Tb40BGSP. The insertion is a figure showing several Raman spectra of $25Gd_2O_3 - 75B_2O_3$ (Gd25B), $30Gd_2O_3 - 70B_2O_3$ (Gd30B), $30Gd_2O_3 - 60B_2O_3 - 10Ga_2O_3$ (Gd30BG), $30Gd_2O_3 - 50B_2O_3 - 10Ga_2O_3 - 10SiO_2$ (Gd30BGS), and $41.7Gd_2O_3 - 41.7B_2O_3 - 8.3Ga_2O_3 - 8.3SiO_2$ (Gd42BGS) are also given, which explains an increasing 980-cm⁻¹ peak of orthoborate groups with an increase in rare-earth oxide in glasses.

against the temperature up to 100 K, as predicted in the paramagnetic theory.¹¹ Interestingly, the FR angle below 120 K was no longer a linear function of *B*; that is, the Verdet constant showed a *B* dependency. Thus, the temperature dependence of the Verdet constant was estimated as $L^{-1}(d\theta_F/dB)_{B=0}$. It is seen from Figure 3 that the temperature dependence had a tendency to be saturated to ca. $-483.6 \text{ rad}/(\text{T} \times \text{m})$. The saturation behavior stemmed from $\text{Dy}^{3+}(\ddagger)-\text{O}^{2-}-\text{Dy}^{3+}(\ddagger)$ superexchange interaction, which prevented the orientation of Dy^{3+} magnetic moments to the applied magnetic fields.¹⁸

Moreover, the simultaneous incorporation of Tb₂O₃ and Dy₂O₃ allowed us to increase the total concentration of rare-earth ions. On the basis of the 5B₂O₃-3Ga₂O₃- $3SiO_2 - P_2O_5$ composition, the total rare-earth content of 50 mol % has been successfully obtained. We prepared two borate glasses incorporated with Tb₂O₃ and Dy₂O₃ (see Table 1 and Figure 1(iii)). A comparison between the Verdet constants of Tb40Dy10BGSP and Tb10Dy40-BGSP reveals that Tb³⁺ ions have a quite high contribution to the Faraday rotation through the lower f-d transition energy (Tb³⁺, \approx 40 000 cm⁻¹; Dy³⁺, \approx 54 000 $cm^{-1 16}$) and Dy^{3+} ions are also of importance due to the largest J value. The latter ions must increase the magnetic susceptibility of the total sample. To obtain direct evidence for the contribution of Dy³⁺ ions to the FR, we measured M(magnetization)-B curves of both Tb_2O_3 and Dy_2O_3 oxide glasses with 40 mol % content in the pulsed magnetic fields at 300 K (see the insertion of Figure 3). As expected, the magnetization of the Dy₂O₃ oxide glass was greater than that of the Tb₂O₃

Figure 3. Temperature dependence of the Verdet constants of Tb₂O₃- or Dy₂O₃-containing borate glasses (Tb40BGSP, Tb30B, and Dy40BGSP). The insertion shows the *M*-*B* curves for Tb40BGSP and Dy40BGSP at 300 K. The magnetic susceptibility of Tb40BGSP and Dy40BGSP is 0.952×10^{-2} and 1.18×10^{-2} , respectively.

oxide glass, where the magnetic susceptibility was 0.952 \times 10^{-2} for Tb40BGSP and 1.18 \times 10^{-2} for Dy40BGSP. The increase in the susceptibility resulted in the densification of the applied magnetic fluxes on the sample, and therefore the internal magnetic fields around Tb^{3+} ions were enhanced.

In conclusion, the higher Verdet constant was obtained when Tb₂O₃ and Dy₂O₃ were simultaneously incorporated to the B₂O₃–Ga₂O₃–SiO₂–P₂O₅ glass matrixes. Not only the small 4f–5d energy separation of Tb³⁺ ions but also the large total angular momentum of the ground state of Dy³⁺ ions contributed quite a bit to the FR properties. The Raman investigation clarified the existence of an amount of orthoborate (BO₃)^{3–} groups. With aid of the negative charges of the isolated borate units, the high incorporation of Tb₂O₃ and Dy₂O₃ as much as 50 mol % could been achieved. The Verdet constant of –185.3 rad/(T × m) was obtained at 632.8 nm at 300 K, which was nearly 2 times greater than the estimations reported previously.

Acknowledgment. Financial supports from the Research Foundation for the Electrotechnology of Chubu (REFEC) and partially a Grand-in-Aid for Scientific Research (No. 13305048 and No. 13026214) for the Ministry of Education, Science, and Culture of Japan are greatly acknowledged.

CM0117331